miércoles, 4 de noviembre de 2009

PLACAS GRAFICA



Una placa o tarjeta gráfica, tarjeta de vídeo, tarjeta aceleradora de gráficos o adaptador de pantalla, es una tarjeta de expansión para una computadora, encargada de procesar los datos provenientes de la CPU y transformarlos en información comprensible y representable en un dispositivo de salida, como un monitor o televisor. Las tarjetas gráficas más comunes son las disponibles para las computadoras compatibles con la IBM PC, debido a la enorme popularidad de éstas, pero otras arquitecturas también hacen uso de este tipo de dispositivos.

Componentes [editar]

GPU [editar]

La GPU, —acrónimo de «graphics processing unit», que significa «unidad de procesamiento gráfico»— es un procesador (como la CPU) dedicado al procesamiento de gráficos; su razón de ser es aligerar la carga de trabajo del procesador central y, por ello, está optimizada para el cálculo en coma flotante, predominante en las funciones 3D. La mayor parte de la información ofrecida en la especificación de una tarjeta gráfica se refiere a las características de la GPU, pues constituye la parte más importante de la tarjeta. Dos de las más importantes de dichas características son la frecuencia de reloj del núcleo, que en 2006 oscilaba entre 250 MHz en las tarjetas de gama baja y 750 MHz en las de gama alta, y el número de pipelines (vertex y fragment shaders), encargadas de traducir una imagen 3D compuesta por vértices y líneas en una imagen 2D compuesta por píxeles.

Memoria de vídeo [editar]

Tecnología Frecuencia (MHz) Ancho de banda (GB/s)
GDDR 166 - 950 1,2 - 30,4
GDDR2 533 - 1000 8,5 - 16
GDDR3 700 - 1700 5,6 - 54,4
GDDR4 1600 - 1800 64 - 86,4
GDDR5 3200 - 7000 24 - 448

Según la tarjeta gráfica esté integrada en la placa base (bajas prestaciones) o no, utilizará la memoria RAM propia del ordenador o dispondrá de una propia. Dicha memoria es la memoria de vídeo o VRAM. Su tamaño oscila entre 128 MB y 1 GB. La memoria empleada en 2006 estaba basada en tecnología DDR, destacando DDR2, GDDR3,GDDR4 y GDDR5. La frecuencia de reloj de la memoria se encontraba entre 400 MHz y 3,6 GHz.

Han conseguido hacer memorias GDDR5 a 7GHZ, gracias al proceso de reducción de 50 nm, permitiendo un gran ancho de banda en buses muy pequeños (incluso de 64 bits)

Una parte importante de la memoria de un adaptador de vídeo es el Z-Buffer, encargado de gestionar las coordenadas de profundidad de las imágenes en los gráficos 3D.

RAMDAC [editar]

El RAMDAC es un conversor de [señal digital|digital]] a analógico de memoria RAM. Se encarga de transformar las señales digitales producidas en el ordenador en una señal analógica que sea interpretable por el monitor. Según el número de bits que maneje a la vez y la velocidad con que lo haga, el conversor será capaz de dar soporte a diferentes velocidades de refresco del monitor (se recomienda trabajar a partir de 75 Hz, nunca con menos de 60).[9] Dada la creciente popularidad de los monitores digitales el RAMDAC está quedando obsoleto, puesto que no es necesaria la conversión analógica si bien es cierto que muchos conservan conexión VGA por compatibilidad.

Salidas [editar]

Salidas SVGA, S-Video y DVI de una tarjeta gráfica

Los sistemas de conexión más habituales entre la tarjeta gráfica y el dispositivo visualizador (como un monitor o un televisor) son:

  • DA-15 conector RGB usado mayoritariamente en los Apple Macintosh
  • Digital TTL DE-9 : usado por las primitivas tarjetas de IBM (MDA, CGA y variantes, EGA y muy contadas VGA)
  • SVGA: estándar analógico de los años 1990; diseñado para dispositivos CRT, sufre de ruido eléctrico y distorsión por la conversión de digital a analógico y el error de muestreo al evaluar los píxeles a enviar al monitor.
  • DVI: sustituto del anterior, fue diseñado para obtener la máxima calidad de visualización en las pantallas digitales como los LCD o proyectores. Evita la distorsión y el ruido al corresponder directamente un píxel a representar con uno del monitor en la resolución nativa del mismo.
  • S-Video: incluido para dar soporte a televisores, reproductores de DVD, vídeos, y videoconsolas.

Otras no tan extendidas en 2007 son:

  • S-Video implementado sobre todo en tarjetas con sintonizador TV y/o chips con soporte de video NTSC/PAL
  • Vídeo Compuesto: analógico de muy baja resolución mediante conector RCA.
  • Vídeo por componentes: utilizado también para proyectores; de calidad comparable a la de SVGA, dispone de tres clavijas (Y, Cb y Cr).
  • HDMI: tecnología de audio y vídeo digital cifrado sin compresión en un mismo cable.

En el mercado de las tarjetas gráficas hay que distinguir dos tipos de fabricantes:

  • De chips: generan exclusivamente la GPU. Los dos más importantes son:
  • GPU integrado en el chipset de la placa base: también destaca Intel además de los antes citados NVIDIA y ATI.

Otros fabricantes como Matrox o S3 Graphics tienen una cuota de mercado muy reducida.

  • De tarjetas: integran los chips adquiridos de los anteriores con el resto de la tarjeta, de diseño propio. De ahí que tarjetas con el mismo chip den resultados diferentes según la marca.
En la tabla adjunta se muestra una relación de los dos fabricantes de chips y algunos de los fabricantes de tarjetas con los que trabajan

Efectos gráficos [editar]

Algunas de las técnicas o efectos habitualmente empleados o generados mediante las tarjetas gráficas son:

  • Antialiasing:

    Antialiasing

    De Wikipedia, la enciclopedia libre

    Aliased.png
    (a)
    Antialiased.png
    (b)
    Antialiased-sinc.png
    (c)

    Figura 1

    En el área del procesamiento digital de señales en general, se le llama antialiasing a los procesos que permiten minimizar el aliasing cuando se desea representar una señal de alta resolución en un sustrato de más baja resolución.

    En la mayoría de los casos, el antialiasing consiste en la eliminación de la información de frecuencia demasiado elevada para poder ser representada. Cuando tal información es dejada en la señal, se pueden producir artefactos impredecibles, tal y como puede verse en la figura 1-a.

    En el contexto del procesamiento digital de señales, un procedimiento de antialiasing podría ser, por ejemplo, el filtrado de las frecuencias que exceden el criterio de Nyquist, limitando así el ancho de banda en la señal. Sin embargo, el término antialiasing aparece con mayor frecuencia en el contexto de los gráficos por computadora.

    En infografía, el antialiasing es un algoritmo que permite evitar los artefactos asociados al aliasing gráfico, como por ejemplo los patrones de Moiré. La figura 1-a muestra en su parte superior las distorsiones visuales espurias que aparecen en una imagen sintética con detalles pequeños, cuando el antialiasing no se utiliza. En contraposición con la figura 1-b, en donde se ha utilizado un esquema de antialiasing, en esa imagen los cuadros blancos y negros se funden en tonos de gris, que es lo que se espera cuando el dispositivo gráfico es incapaz de mostrar la fineza de los detalles. La figura 1-c muestra la imagen que resulta al aplicar una segunda estrategia de antialiasing, esta vez basada en la transformada de Fourier de la imagen.

  • Shader: La tecnología shaders es cualquier unidad escrita en un lenguaje de sombreado que se puede compilar independientemente. Es una tecnología reciente y que ha experimentado una gran evolución destinada a proporcionar al programador una interacción con la GPU hasta ahora imposible. Los shaders son utilizados para realizar transformaciones y crear efectos especiales, como por ejemplo iluminación, fuego o niebla. Para su programación los shaders utilizan lenguajes específicos de alto nivel que permitan la independencia del hardware.

Lenguajes de sombreado

Para la escritura de esas instrucciones, los programadores hacen uso de unos lenguajes de programación diseñados específicamente para ello. Cada uno de estos lenguajes de programación necesita enlazarse mediante una API, entre otras DirectX o OpenGL. Existen otros lenguajes pero los siguientes son los más conocidos.

  • HLSL es la implementación propiedad de Microsoft, la cual colaboro junto a Nvidia para crear un lenguaje de sombreado. Este lenguaje se debe utilizar junto a DirectX (la primera versión para la que se puede utilizar es DirectX 8.0). Anteriormente al DirectX 8 (DirectX 7, 6, 5...) se utilizaba otro método el cual era más complicado y complejo para ser utilizado. (Entre lo que era el lenguaje, creación de objetos, sonidos, partículas, entre otras).
  • GLSL es el lenguaje desarrollado por el grupo Khornox. Esta diseñado específicamente para su uso dentro del entorno de OpenGL. Sus diseñadores afirman que se ha hecho un gran esfuerzo para lograr altos niveles de paralelismo. Su diseño se basa en C y RenderMan como modelo de lenguaje de sombreado.
  • CG lenguaje propiedad de la empresa Nvidia resultante de su colaboración con Microsoft para el desarrollo de un lenguaje de sombreado. Su principal ventaja es que puede ser usado por las APIs OpenGL y DirectX. Otra ventaja de este lenguaje es el uso de perfiles. Estos lenguajes no son totalmente independientes del hardware por lo tanto es recomendable crear programas especificos para diferentes tarjetas gráficas. Los perfiles de CG se encargan de elegir para su ejecución el más adecuado de los programas disponibles para el hardware.

A la hora de estudiar rendimientos es difícil aseverar nada. No sólo se deben tener en cuenta el fabricante (Nvidia o ATI) sino la versión del modelo de sombreado, el controlador instalado y el lenguaje usado. Usualmente mientras más avanzada sea la versión shaders la cantidad de objetos, texturas, efectos ambientales (Sol, Nubes 3D, Humos, Fuegos Realistas, Aguas, Iluminación) serán mayores con formas, colores y texturas más realistas.

Tipos de procesadores shader

A continuación se presentan los diferentes tipos de procesadores shader que la GPU tiene, las cantidades de cada uno crecen con celeridad entre generaciones de gráficas. Los shaders trabajan de la siguiente manera. El programador envía un conjunto de vértices que forman su escena gráfica a través de un lenguaje de proposito general. Todos los vértices pasan por el vertex shader donde pueden ser transformados y se determina su posición final. El siguiente paso es el geometry shader donde se pueden eliminar o añadir vértices. Posteriormente los vértices son ensamblados formando primitivas que son rasterizadas, proceso en el cual las superficies se dividen en puntos que corresponden a píxeles de la pantalla. El Píxel/Fragment shader se encarga de modificar estos puntos. Por último se producen cierto tests entre ellos el de profundidad que determina que punto es dibujado en pantalla.

  • Vertex shader: Permite transformaciones sobre coordenadas, normal, color, textura, etc. de un vértice. No puede saberse el orden entre vértices ni pasarse información entre ellos (esto ocurre también en el resto de tipos).
  • Geometry shader: Es capaz de generar nuevas primitivas dinámicamente así como de modificar existentes. Un ejemplo claro es la decisión de utilizar o eliminar vértices en una malla polígonal según la posición del observador aplicando la técnica Nivel de detalle.
  • Píxel/Fragment shader: En primer lugar aclarar la difererencia entre fragmento y píxel. Desde la Khronos group se apuesta por diferenciar que fragmento es lo que se procesa puesto que existen múltiples relacionados con un mismo píxel de la pantalla. La terminología seguida por Microsoft y Nvidia es la de píxel que puede dar lugar a confusión ya que no se trabaja con lo de la pantalla sino con los de cada figura. En este procesador se pueden hacer diversas transformaciones como cambiar la profundidad o trabajar con texels así como calcular efectos de iluminación con gran precisión. Todo lo ejecutado debe determinar el color que debería aplicarse sobre el píxel en caso de ser usado. También es útil para modificar la profundidad.
  • HDR: High dynamic range (HDR), aunque el nombre completo de esta tecnología es "high dynamic range rendering" o HDRR (renderizado de alto rango dinámico), es una tecnología de renderizado que imita el funcionamiento de la pupila en el ojo humano. El ojo humano se adapta de forma continua y con gran eficacia a las diferentes luminosidades de una misma escena abriendo o cerrando la pupila mientras se va integrando toda la información captada en el cerebro. De esta forma, este órgano es capaz de hacer ver de forma clara una escena con zonas con diferente iluminación. Las máquinas fotográficas no tienen esa capacidad de adaptación y lo que hacen por medio del fotómetro (medidor de luz) es tomar una media de las diferentes zonas y realizar la fotografía con ésta, de forma que algunas zonas pueden quedar bien iluminadas pero a costa de que otras queden oscuras y otras demasiado blancas. Mediante las técnicas de HDR, se intenta subsanar este defecto de la fotografía consiguiendo iluminar correctamente todas sus zonas aunque contengan "cantidades de luz" muy diferentes.

HDR en videojuegos

Este realismo se aplica a las animaciones en 3D o a los videojuegos. Los primeros videojuegos en utilizar esta tecnología fueron Far Cry y Half-Life 2: Lost Coast. Un ejemplo bastante interesante son las imágenes HDR que caracterizan a Tom Clancy's Rainbow Six: Vegas.

Hoy en día existen varios videojuegos con esta característica para dar mayor "realismo" gráfico, particularmente a videojuegos con un tema de juego donde aparezcan elementos detallados y muy definidos, como personas, animales, ambientes naturales, etcétera, y a su vez para aumentar la calidad de gráficos del sistema, y por otro lado, busca llamar la atención y satisfacer al jugador en lo que a calidad de gráficos se refiere.


  • Mapeado de texturas: técnica que añade detalles en las superficies de los modelos, sin aumentar la complejidad de los mismos
  • Motion Blur: efecto de emborronado debido a la velocidad de un objeto en movimiento.
  • Depth Blur: efecto de emborronado adquirido por la lejanía de un objeto.
  • Lens flare: imitación de los destellos producidos por las fuentes de luz sobre las lentes de la cámara.
  • Efecto Fresne: (reflejo especular): reflejos sobre un material dependiendo del ángulo entre la superficie normal y la dirección de observación. A mayor ángulo, más reflectante.

No hay comentarios:

Publicar un comentario